Today we start to consider other topic than mechanism design.

Review of Braess’ paradox

A road network for sending traffic from location ss to location tt

Latency of the long wide road: 11 hour

Latency of the short narrow road: xx hours, where xx is the fraction traffic

Travel time: 1.51.5 hours 因为均衡:左边多了会有人到右边,右边多了会有人到左边

If authority build a very fast short-cut from A to B:

All users have an incentive to use the new road

假设只走左边的有 α\alpha,只走右边的有 β\beta,使用传送节点的有 1αβ1-\alpha-\beta

对于只走左边的时间:(α+(1αβ))+1=1β+1=2β(\alpha+(1-\alpha-\beta))+1=1-\beta+1=2-\beta

同理,对于只走右边的时间:1+1α=2α1+1-\alpha=2-\alpha

对于使用传送节点的时间:1β+0+1α=2αβ1-\beta+0+1-\alpha=2-\alpha-\beta

可以看出使用传送节点对于所有人都是最优选。

New travel time: 22 hours

Price of anarchy: quantifies inefficiencies

Here, price of anarchy=43\text{price of anarchy}=\frac{4}{3}.

Pigou’s example

One unit of traffic from ss to tt.

Equilibrium: all traffic uses the lower path (x=100%x=100\%, travel time = 11)

Optimal route (i.e., minimizing average travel time): half traffic through the left path, half traffic from the right path.

Optimal average travel time =34=\frac{3}{4}

Price of anarchy =43=\frac{4}{3}

What if for short path, c(x)=xpc(x)=x^p?

Optimal route: some traffic through the left path, some traffic through the right path.

Average travel time=1×(1x)+x×xp\text{Average travel time}=1\times(1-x)+x\times x^p

Optimal average time == minimal of average travel time =(1p+1)p+1p(1p+1)1p+1=(\frac{1}{p+1})^\frac{p+1}{p}-(\frac{1}{p+1})^\frac{1}{p}+1

Price of anarchy depends on pp

Ingredients of a Pigou-like network

  • Two nodes, ss and tt
  • Two edges between ss and tt, called the upper (left) and lower (right) path
  • A non-negative traffic rate rr
  • A cost function c()c(\cdot) on the lower path
  • Constant cost function equal to c(r)c(r) on the upper path

The PoA of a Pigou-like network

PoA=supx0{r×c(r)x×c(x)+(rx)×c(r)}=sup0xr{r×c(r)x×c(x)+(rx)×c(r)}\text{PoA}=\sup_{x\ge0}\{\frac{r\times c(r)}{x\times c(x)+(r-x)\times c(r)}\}=\sup_{0\le x\le r}\{\frac{r\times c(r)}{x\times c(x)+(r-x)\times c(r)}\}

x>r,x[0,r]:xc(x)+(rx)c(r)xc(x)+(rx)c(r)\forall x\gt r,\exist x'\in[0,r]:x\cdot c(x)+(r-x)\cdot c(r)\ge x'\cdot c(x')+(r-x')\cdot c(r)

To prove this, it suffices to observe that

xc(x)+(rx)c(r)=rc(r)+x(c(x)c(r))rc(r)=xc(x)+(rx)c(r)x\cdot c(x)+(r-x)\cdot c(r)=r\cdot c(r)+x(c(x)-c(r))\ge r\cdot c(r)=x'\cdot c(x')+(r-x')\cdot c(r) for x=r[0,r]x'=r\in[0,r]

Price of Anarchy equals:

cost at equilibrium (all routing traffic on the lower path) over

cost of routing a traffic fraction xx on the lower path + cost of routing a traffic fraction rxr-x on the upper path

Family of latency functions CC.

  • linear latencies: c(x)=ax+bc(x)=ax+b, a,b0a,b\ge0
  • quadratic latencies: c(x)=ax2+bx+cc(x)=ax^2+bx+c, a,b,c0a,b,c\ge0
  • polynomial of degree d: c(x)=j=0dajxjc(x)=\sum_{j=0}^da_jx^j, aj0a_j\ge0
  • concave non-decreasing function 上凸非减函数

Let CC be a set of non-negative, continuous, non-decreasing cost functions:

a(C)=supcCsupr0supx0{r×c(r)x×c(x)+(rx)×c(r)}a(C)=\sup_{c\in C}\sup_{r\ge0}\sup_{x\ge0}\{\frac{r\times c(r)}{x\times c(x)+(r-x)\times c(r)}\}

Application: PoA=43\text{PoA}=\frac{4}{3} for linear (affine) or concave cost functions.

  1. c(x)=αx+βc(x)=\alpha x+\beta:

a(linear)=supα,β0supr0supx0r(αr+β)x(αx+β)+(rx)(αr+β)a(\text{linear})=\sup_{\alpha,\beta\ge0}\sup_{r\ge0}\sup_{x\ge0}\frac{r(\alpha r+\beta)}{x(\alpha x+\beta)+(r-x)(\alpha r+\beta)}

derivative of denominator =02αx+βαrβ=0x=r2=0\Rarr2\alpha x+\beta-\alpha r-\beta=0\Rarr x=\frac{r}{2}

Thus, the denominator becomes: αr24+βr2+αr22+βr2=34αr2+βr34r(αr+β)\alpha\frac{r^2}{4}+\frac{\beta r}{2}+\alpha\frac{r^2}{2}+\frac{\beta r}{2}=\frac{3}{4}\alpha r^2+\beta r\ge\frac{3}{4}r(\alpha r+\beta)

所以无序的代价 PoA 最大值是 43\frac{4}{3}

  1. a(concave non-decreasing)=43a(\text{concave non-decreasing})=\frac{4}{3}

For every concave non-decreasing latency function cc, there is a linear latency function cc' with c(r)=c(r)c(r)=c'(r), s.t. rc(r)xc(x)+(rx)c(r)rc(r)xc(x)+(rx)c(r)\frac{r\cdot c(r)}{x\cdot c(x)+(r-x)\cdot c(r)}\le\frac{r\cdot c'(r)}{x\cdot c'(x)+(r-x)\cdot c'(r)}

通过画图可以证明,上凸函数和线性函数 xc(x)xc(x)x\cdot c(x)\ge x\cdot c'(x), (rx)c(r)=(rx)c(r)(r-x)\cdot c(r)=(r-x)\cdot c'(r). 分子相等,分母左边比右边小。

The Price of anarchy of selfish routing

Theorem

For every set CC of cost functions, and every selfish routing network with cost functions in CC, the Price of Anarchy is at most a(C)a(C).

Selfish routing network: connecting node ss to node tt

Equilibrium flow: traffic travels only on shortest sts-t paths.

Volume of rr of users who want to route traffic from ss to tt.

cec_e: latency function of edge ee

fef_e: total volume of user who cross edge e=p,epfpe=\sum_{p,e\in p}f_p

pp: a path from ss to tt in GG.

fpf_p: total volume of user who use path pp

Equilibrium condition: For every path pp from ss to tt, s.t. fp>0f_p\gt0, the total latency epce(fe)\sum_{e\in p}c_e(f_e) is minimum possible.

C(f)C(f): total cost of set of strategies ff

ff^* optimal set of strategies i.e. the strategies minimizing the total latency.

Cost of a flow:

C(f)=eEfe×ce(fe)C(f)=\sum_{e\in E}f_e\times c_e(f_e)

Assume that ff and ff^* are an equilibrium and optimal flow respectively, then

C(f)C(f)a(C)\frac{C(f)}{C(f^*)}\le a(C)

Proof

Information we will use in the proof: Why don’t the players use their optimal strategies at equilibrium.

  • Observation: For a path pp with fp>0f_p\gt0, we have that the latency is minimum possible. i.e. epce(fe)=L\sum_{e\in p}c_e(f_e)=L ① which is as low as possible. Meaning that for every path pp with fp>0f^*_p\gt0, We have epce(fe)L\sum_{e\in p}c_e(f_e)\ge L ②.

  • By summing ① for all paths with fp>0f_p\gt0 from ss to tt, we have p:fp>0fpepce(fe)=p:fp>0Lfp=r×L\sum_{p:f_p\gt0}f_p\cdot\sum_{e\in p}c_e(f_e)=\sum_{p: f_p\gt0}L\cdot f_p=r\times L

  • By doing the same with ② and all paths with fp>0f^*_p\gt0 from ss to tt, we have p:fp>0fpepce(fe)p:fp>0fpL=r×L\sum_{p:f^*_p\gt0}f^*_p\cdot\sum_{e\in p}c_e(f_e)\ge\sum_{p:f^*_p\gt0}f^*_pL=r\times L

  • The Left Hand Side of ③ is equal to p:fp>0fpepce(fe)\sum_{p:f_p\gt0}f_p\cdot\sum_{e\in p}c_e(f_e)

    =eEp:fp>0,epfpce(fe)=eEce(fe)p:fp>0,epfp=\sum_{e\in E}\sum_{p:f_p\gt0,e\in p}f_p\cdot c_e(f_e)=\sum_{e\in E}c_e(f_e)\sum_{p:f_p\gt0,e\in p}f_p

  • The LHS of ④ is equal to epp:fp>0fpce(fe)\sum_{e\in p}\sum_{p:f^*_p\gt0}f^*_p\cdot c_e(f_e)

    =eEep,p:fp>0fpce(fe)=eEce(fe)ep,p:fp>0fp=eEfece(fe)=\sum_{e\in E}\sum_{e\in p,p:f^*_p\gt0}f^*_pc_e(f_e)=\sum_{e\in E}c_e(f_e)\sum_{e\in p,p:f^*_p\gt0}f^*_p=\sum_{e\in E}f^*_ec_e(f_e)

  • From ③ and ④ and their equivalent expressions, we have eE(fefe)ce(fe)0\sum_{e\in E}(f^*_e-f_e)c_e(f_e)\ge0

a(c)=supcCsupr0supx0rc(r)xc(x)+(rx)c(r)a(c)=\sup_{c\in C}\sup_{r\ge0}\sup_{x\ge0}\frac{rc(r)}{xc(x)+(r-x)c(r)}

Thus, using c=ce,r=fe,x=fec=c_e,r=f_e,x=f^*_e, we have that

a(c)fece(fe)fece(fe)+(fefe)c(fe)a(c)\ge\frac{f_ec_e(f_e)}{f^*_ec_e(f^*_e)+(f_e-f^*_e)c(f_e)}

fece(fe)a(c)fece(fe)+a(c)(fefe)ce(fe)\Rarr f_ec_e(f_e)\le a(c)f^*_ec_e(f^*_e)+a(c)(f_e-f^*_e)c_e(f_e)

Summing over all edges, we have

eEfece(fe)a(c)eEfece(fe)+a(c)eE(fefe)ce(fe)a(c)eEfece(fe)c(f)=pfpepce(fe)=pefpce(fe)=efece(fe)c(f)a(c)c(f)\sum_{e\in E}f_ec_e(f_e)\le a(c)\sum_{e\in E}f^*_ec_e(f^*_e)+a(c)\sum_{e\in E}(f^*_e-f_e)c_e(f_e)\\ \le a(c)\sum_{e\in E}f^*_ec_e(f^*_e)\\ \Rarr c(f)=\sum_pf_p\sum_{e\in p}c_e(f_e)=\sum_p\sum_ef_pc_e(f_e)=\sum_ef_ec_e(f_e)\\ \therefore c(f)\le a(c)\cdot c(f^*)