丹麦语 DU 3.2 4 Humør og følelser
Ved du hvem der … 你知道谁…… Modul 2 考试的选题: Mit studie, Min sprogskole, Min praktik, Min bolig, Min fritidsaktivitet, Mit arbejde God fornøjelse. 玩的开心。 Hvad er der i vejen med dig? 你咋了? Hvordan har du det? miste -r -de -t 丢失,失去 tegnebog -en …bøger …bøgerne 钱包 oplevelse -b -r -rne 经历 dumpe -r -de -t 挂科;倾倒 fejl -en - -ene 失误;错误 Humør/følelser Dansk Kinesisk Jeg er i godt humør 我心情好 Jeg er i dårligt humør 我心情不好 Jeg er glad 我高兴 Jeg er tilfreds 我满意 Jeg er lykkelig 我很高兴 Jeg er stolt 我自豪 ...
数据挖掘 5 Outlier Detection
Outlier detection as the task of finding anomalous points in data. Brief Introduction Outlier: definition depends on the application. “An object that deviates so much from the rest of the data as to arouse suspicion that it was generated by a different mechanism.” Noise VS outliers: Noise is a measuring error. Outlier is a point that belongs to the same distribution. Different types of outliers: Global outliers: Point that significantly deviate from the data set. Contextual outliers: Points de ...
随机算法 5 Streaming Algorithms for Frequency Estimation
Lecture notes adopted from UCB CS270 Streaming Algorithms: Frequent Items Streaming setting: Data stream x1,x2,⋯ ,xnx_1,x_2,\cdots,x_nx1,x2,⋯,xn with xi∈[m]x_i\in[m]xi∈[m]. The available memory is O(logcn)O(\log^cn)O(logcn). Sub-linear space. Algorithm: Approximates frequencies for the top kkk items. Deterministic Algorithm To estimate item frequencies fjf_jfj within an additive error of n/kn/kn/k using with O(klogn)O(k\log n)O(klogn) memory. (logn\log nlogn 这里指的是内存的比特数量。) Maintain set ...
西语学习 A1 发音入门
Aula de español 西语课堂 西班牙语使用人数:约 4.5 亿人,20 个国家。 西班牙语是拼音文字,采用拉丁字母书写。 西语书写与发音密切相关,所见即所得。正字法优秀,赞一个👍 西语字母表 27 个字母,5 个元音,22 个辅音 -ch -ll 不在字母表中,看作双辅音 Aa a Bb be Cc ce Dd de Ee e Ff efe Gg ge Hh hache Ii i Jj jota Kk ca Ll ele Mm eme Nn ene Ññ eñe Oo o Pp pe Qq cu Rr ere Ss ese Tt te Uu u Vv uve Ww doble uve Xx equis Yy igriega Zz zeta 元音 单元音 A a [a] “啊” Asia, casa, mapa, patata E e [e] “鹅◡诶” eje, mes, jefe I i [i] “依” hijo, Italia, hoy, hay O o [o] “喔/哦” ojo, solo, cómo, poco U u [u] “呜” uso, único ...
法语学习 A1 Unité 3 Ça se trouve où?
Leçon 9 Appartement à louer Vocabulaire 序数词 premier/première 第一 deuxième 第二 troisième 第三 quatrième 第四 cinquième 第五 sixième 第六 septième 第七 huitième 第八 neuvième 第九 dixième 第十 onzième 第十一 douzième 第十二 treizième 第十三 quatorzième 第十四 quinzième 第十五 seizième 第十六 dix-septième 第十七 dix-huitième 第十八 dix-neuvième 第十九 vingtième 第二十 楼层有关的词 étage n.m. 楼层 le rez-de-chaussée 底层,一楼 le premier étage 二楼 le deuxième étage 三楼 名词 annonce n.f. 启示,告示,公告 bout n.m. 末端,尽头 au bout de … 在……的尽头,末端 immeuble n.m. 大楼,房屋 appa ...
丹麦语 DU 3.2 3 Bolig
Fælles feedback aflevering 2 wrong correct Kan du bedre lide te eller kaffe? Kan du bedst lide … medbringe (lidt formelt til en ven) … tage et par øl med jeg skal holde fest på lørdag jeg holder fest på lørdag hvad musik hvad (hvilken) slags musik Kan du bedre lide kaffe eller te? Kan du bedst lide kaffe eller te? eller Kan du bedre lide kaffe end te? OBS: Komparativ-formen elsker “end” SU: Svar udbedes eller bare “Kommer du?” eller “Skriv lige om du kan komme”. Eller: Skriv t ...
数据挖掘 4 Hierarchical and Subspace Clustering
When data has high dimensions or clusters have different densities, methods like DBSCAN and kkk-means might fail. Hierarchical clustering partitions the space in progressively smaller clusters. Hierarchical agglomerative clustering 层次凝聚聚类:single-link, complete-link and average-link strategies to merge clusters and form larger clusters. OPTICS clustering that order density reachable points to find cluster structures BRICH that summarizes the data to understand similarities Subspace finds differ ...
随机算法 4 Karger's Min Cut Algorithm
Lecturer this time: Ioannis Caragiannis Lecture notes is based on Karger’s Min Cut Algorithm by Sanjeev Arora, Sanjoy Dasgupta Karger’s min cut algorithm and its extension. It’s simple for finding the minimum cut in a graph. Clustering via Graph Cuts The minimum cut of an undirected graph G=(V,E)G=(V,E)G=(V,E) is a partition of the nodes into two groups V1,V2V_1,V_2V1,V2 (s.t. V=V1∪V2V=V_1\cup V_2V=V1∪V2 and V1∩V2=∅V_1\cap V_2=\emptyV1∩V2=∅) so that the number of edges between V1V_1V1 an ...
Fair Division 2 Relations of Fairness Properties
Objective: Investigate relations between several fairness properties and their approximations. Activities: Read and present the paper Multiple birds with one stone (2020). Abstract Algorithm proposed, achieves (ϕ−1)(\phi-1)(ϕ−1)-EFX and 2ϕ+2\frac{2}{\phi+2}ϕ+22-GMMS. (ϕ=5+12\phi={\sqrt5+1\over2}ϕ=25+1) Previous work: 121\over221-EFX. 121\over221-GMMS. EF1 + 232\over332-PMMS. GMMS PMMS EFX allocation always exist when # of goods ≤2×\le2\times≤2×# of agents. Introduction Relaxation of fa ...
数据挖掘 3 Densiy-based Clustering
Density-based departs from the rigid geometrical structure of representative-based clustering and defines cluster as high-density regions separated by low density regions. Density is number of points in a certain region in proportion to the size of the region. Different definition of density, different density-based approaches. DBSCAN A density-based clustering algorithm grounded into the intuition that a point in a cluster should be density reachable from any other point in that cluster, i.e., ...