A function of a real variable y=f(x) is differentiable at a point a of its domain, if its domain contains an open interval I containing a, the limit:
L=limh→0hf(a+h)−f(a)
L’Hôpital’s Rule
Used to find the limit value of an expression
The limits of the numerator (分子) and denominator (分母) are both 0 or infinite.
Taylor’s Formular
f(x)=∑i=0∞i!fi(x0)(x−x0)i
ex=1+x+2!x2+3!x3+o(x3)
Indefinite Integral
∫f(x)dx=F(x)+C
Definite Integral
The definition of definite integral is based on finding the area of a curved-sided trapezoid (曲边梯形). Therefore, the definition of definite integral is used to find the area, i.e. to get a number.
Newton Leibniz Formula
Given ∫f(x)dx=Φ(x)+C
∫abf(x)dx=Φ(b)−Φ(a)
Multivariable
Double Integral
How to calculate?
find the domain of each variable
step by step, each step for a variable
z.B. σ: y=cx, x=a, x=b, Ox. c>0, b>a>0, ∬σ(x+y)dσ
evidently, a≤x≤b, 0≤y≤cx
∬σ(x+y)dσ
=∫abdx∫0cx(x+y)dy
=∫ab[xy+2y2]0cxdx
=∫ab(22c+c2)x2dx
=61(2c+c2)(b3−a3)
If introduce new prarms u,v s.t. x=x(u,v), y=y(u,v)
then ∬Df(x,y)dxdy=∬D′f[x(u,v),y(u,v)]∣∂(u,v)∂(x,y)∣dudv
Jacobian J=∣∂(u,v)∂(x,y)∣=xu′yv′−xv′yu′
Line Integral
∫Cf(x,y)ds=∫abf(x(t),y(t))x′(t)2+y′(t)2dt
z.B. L is a part of unit circle in the first quadrant (第一象限), ∫Lxyds
Parametric equation of L is: x=cost, y=sint, 0≤t≤2π
Then ∫Lxyds=∫02πcostsint(−sint)2+cos2tdt
=∫02πcostsintdt=21
or
y=1−x2, 0≤x≤1
Then ∫Lxyds=∫01x1−x2×1+1−x2x2dx
=∫01xdx=21
Numerical Series
Convergence 收敛
Divergence 发散
p- series ∑nnp1: when p>1, convergent; when p<=1, divergent.