Determinant
It’s a function whose definition domain is the n×n matrix A.
Für eine nur aus einem Koeffizienten bestehende 1×1-Matrix A ist
detA=det(a11)=a11
ist A eine 2×2-Matrix, dann ist
detA=det(a11a21a12a22)=a11∗a22−a12∗a21
für eine N×N-Matrix A gilt die Formel:
detA=∑j1⋯jn(−1)τ(j1⋯jn)a1j1a2j2⋯anjn
which τ means number of reverse pairs of permutation j1⋯jn
Matrix
A table of numbers in m rows and n columns arranged by m*n numbers aij is called a matrix of m rows and n columns.
Addition, Subtraction, Multiple with numbers, Multiple with another matrix, Transpose of the matrix
Invertible Matrix
A∗ is adjugate matrix
define: Aij is matrix determinant multiply (−1)i+j which delete i-th row and j-th column
A∗=⎝⎛A11An1⋯⋯⋯A1nAnn⎠⎞
A−1=detA1A∗
Another way of calculating invert matrix
(A,I) Elementary Line Transformation to (I,B), then B=A−1
Cramer’s Rule
⎩⎪⎪⎪⎨⎪⎪⎪⎧a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2⋯⋯⋯an1x1+an2x2+⋯+annxn=bn
D=det⎝⎜⎜⎜⎛a11a21an1a12a22⋯an2⋯⋯⋯⋯a1na2nann⎠⎟⎟⎟⎞
D1=det⎝⎜⎜⎜⎛b1b2bna12a22⋯an2⋯⋯⋯⋯a1na2nann⎠⎟⎟⎟⎞
D2=det⎝⎜⎜⎜⎛a11a21an1b1b2⋯bn⋯⋯⋯⋯a1na2nann⎠⎟⎟⎟⎞
…
Dn=det⎝⎜⎜⎜⎛a11a21an1a12a22⋯an2⋯⋯⋯⋯b1b2bn⎠⎟⎟⎟⎞
Then, xi=DDi. (if D=0, no solution.)
Eigen Value
矩阵的特征值
z.B. what’s the eigen value & eigen vector of A=⎝⎛−1111−1111−1⎠⎞?
Eigen polynomial of A is: ∣λI−A∣=det⎝⎛λ+1−1−1−1λ+1−1−1−1λ+1⎠⎞
=det⎝⎛λ+1−1−1−1−1−1+λ+1−1λ+1−1−1−1+λ+1−1λ+1⎠⎞
=(λ−1)×det⎝⎛1−1−11λ+1−11−1λ+1⎠⎞
=(λ−1)×det⎝⎛1001λ+2010λ+2⎠⎞
=(λ−1)(λ+2)2
∣λI−A∣=0⇒λ=1,−2
So 1 and -2 are eigen values of matrix A.
For eigen vector x, Ax=λx
(A−λI)x=0, solve the 2 equations with λ=1,−2
when λ=1, x1=x2=x3, so k1=(1,1,1)T, ξk1(ξ=0) is eigen vector of A.
when λ=−2, x1+x2+x3=0 so k2=(a,b,−a−b)T is eigen vector of A.
trace tr(A)=∑λ
determinant detA=Πλ