Signal

Sampling: sensor→A/D

Digital signal VS analog signal

analog: both X Y are contiguous. digital: both are discrete.

Basic Operations on Digital Signal

x[n]={,0.2,2.2,1.1,0.2,3.7,}x[n]=\{\cdots,-0.2,2.2,1.1,0.2,-3.7,\cdots\}

addition, multiplication, time shifting(delay), reversing(反折), stretching(拉伸)

difference(差分): x[n]=x[n+1]x[n]x'[n]=x[n+1]-x[n]

accumulation(累加)

⚠️Convolution(卷积​,非常重要): F(t)=x(n)h(n)=kx[nk]h[k]F(t)=x(n)*h(n)=\sum_kx[n-k]h[k]

  • commutative 交换律
  • associative 结合律
  • distributive 分配律

Circular convolution: y(n)=x(n)h(n)=k(x[nk]h[k])×Rk(n)y(n)=x(n)\circledast h(n)=\sum_k(x[n-k]h[k])\times R_k(n)

length of results of convolution between x[n] and h[k]: n+k-1.

Signal Types

details

pulse signal: δ(t)\delta(t)

step signal: u(n)u(n), δ(n)=u(n)u(n1)\delta(n)=u(n)-u(n-1)

sine and cosine signal.

Signaling System

LTI

aka Linear Time Invariant System

y[n]=αx1[n]+βx2[n]y[n]=\alpha x_1[n]+\beta x_2[n]

accumulator is a typical LTI.

median filter is not LTI.

Fourier Transform

aka fourier transform

FT typeobject
Fourier Transformnon-periodic, contiguous
Fourier Seriesperiodic, contiguous
Discrete Time Fourier Transformnon-periodic, discrete
Discrete Fourier Seriesperiodic, discrete

DTFT: X(ejω)=n=0N1x(n)ejωnX(e^{j\omega})=\sum_{n=0}^{N-1}x(n)e^{-j\omega n}

DFS: X(n)=n=0N1x(n)ej2πNknX(n)=\sum_{n=0}^{N-1}x(n)e^{-j\frac{2\pi}{N}kn}

Inverse DFS: x(n)=1Nn=0N1X(n)ej2πNknx(n)=\frac{1}{N}\sum_{n=0}^{N-1}X(n)e^{j\frac{2\pi}{N}kn}