Parity function is not in AC0AC^0.

MAJ∉AC0MAJ\not\in AC^0.

NEXP⊈ACC0NEXP\not\subseteq ACC^0.

Some unknown proposition:

  • whether NPACC0NP\subseteq ACC^0.

  • whether EXPACC0EXP\subseteq ACC^0.

  • whether NEXPTC0NEXP\subseteq TC^0.

  • whether all languages in NEXPNEXP can be computed by depth 22 circuits consisting of weighted linear threshold gates.

The Razborov-Smolensky Lower Bound

The lower bounds for class AC0[pr]AC^0[p^r], where pp is a prime.

Main idea: convert Boolean circuit of small size into a low-degree probabilistic polynomial.

Here we consider r=1r=1.

📖Definition 43. Let F\mathbb F be a field. By a probabilistic polynomial PP in nn variables of total degree dd over F\mathbb F we mean a random variable assuming as value such polynomials. Let f:{0,1}n{0,1}f:\{0,1\}^n\to\{0,1\} be a Boolean function. We say that PP computes ff with error ϵ\epsilon if Pr[P(x)=f(x)]1ϵ\Pr[P(x)=f(x)]\ge1-\epsilon for all x{0,1}nx\in\{0,1\}^n. Similarly we say that PP computes ff with one-sided error ϵ\epsilon if PP computes ff with error ϵ\epsilon and furthermore we have Pr[P(x)=f(x)]=1\Pr[P(x)=f(x)]=1 for all x{0,1}nx\in\{0,1\}^n where f(x)=0f(x)=0.

Then construct a probabilistic polynomial form an AC0[p]AC^0[p] circuit.

🤔Lemma 13. Let pp be a prime and let CC be a depth hh circuit with at most SS unbounded fanin AND,OR,MODpAND,OR,MOD_p as well as negation gates computing a Boolean function ff. Let t1t\ge1 be an arbitrary integer. Then for any nn there exist a probabilistic polynomial in nn variables of total degree at most (pt)h(pt)^h over Zp\mathbb Z_p computing ff with error Spt\frac{S}{p^t}.

Probabilistic polynomial for each of the gates of CC. Each of these will be of degree at most ptpt and compute the gate function with error 1pt\frac{1}{p^t}.

Composing these will give probabilistic polynomial of degree at most (pt)h(pt)^h computing ff and with error at most Spt\frac{S}{p^t} by a union bound.

Input gates: xix_i can be computed by the polynomials xix_i with error 00. xˉi\bar x_i can be computed by the polynomials 1xi1-x_i with error 00.

Negation gates: ¬z\neg z can be computed by the polynomial 1y1-y with error 00.

MODpMOD_p gate with inputs z1,,zkz_1,\cdots,z_k can be computed by the polynomial

(i=1kzi)p1\left(\sum_{i=1}^kz_i\right)^{p-1}

with error 00 by Fermat’s little theorem.

OROR gate with inputs z1,,zkz_1,\cdots,z_k: Consider picking a1,,akZpa_1,\cdots,a_k\in\mathbb Z_p uniformly and independently at random. Using Fermat’s little theorem again, we have the polynomial

(i=1kaizi)p1\left(\sum_{i=1}^ka_iz_i\right)^{p-1}

computes OR(z1,,zk)OR(z_1,\cdots,z_k) with one-sided error 1p\frac{1}{p}. In order to decrease the error, use success amplification using tt independent trials.

1j=1t(1(i=1kaijzi)p1),1-\prod_{j=1}^t\left(1-\left(\sum_{i=1}^ka_{ij}z_i\right)^{p-1}\right),

which then computes OR(z1,,zk)OR(z_1,\cdots,z_k) with one-sided error 1pt\frac{1}{p^t}.

Analogously, for ANDAND gate, the probabilistic polynomial

1j=1t(1(i=1kaij(1zi))p1).1-\prod_{j=1}^t\left(1-\left(\sum_{i=1}^ka_{ij}(1-z_i)\right)^{p-1}\right).

🤔Lemma 14. Let PP be a probabilistic polynomial of degree dd and let f:{a,b}nFf:\{a,b\}^n\to\mathbb F be a function s.t. Pr[P(x)=f(x)]1ϵ\Pr[P(x)=f(x)]\ge1-\epsilon. Then there exists a polynomial PP' of degree dd and a set G{a,b}nG\subseteq\{a,b\}^n with G(1ϵ)2n|G|\ge(1-\epsilon)2^n s.t. P(x)=f(x)P(x)=f(x) for all xGx\in G.

Linearity of expectation:

E[x{a,b}n:P(x)=f(x)]=x{a,b}nPr[P(x)=f(x)]2n(1ϵ),\mathbb E[|x\in\{a,b\}^n:P(x)=f(x)|]=\sum_{x\in\{a,b\}^n}\Pr[P(x)=f(x)]\ge2^n(1-\epsilon),

A low-degree polynomial is equal to the product of all variables on a set G{a,b}nG\subseteq\{a,b\}^n enables one to replace all polynomials by equivalent polynomials on the set GG of degree significantly smaller than nn.

🤔Lemma 15. Let PP be a polynomial in nn variables of total degree Δ\Delta over a field F\mathbb F. Let a,bFa,b\in\mathbb F and suppose G{a,b}nG\subseteq\{a,b\}^n is s.t.

yG:P(y)=i=1nyi.\forall y\in G:P(y)=\prod_{i=1}^ny_i.

Then for every function f:GFf:G\to\mathbb F there exists a polynomial PfP_f of total degree at most n+Δ2\frac{n+\Delta}{2} s.t.

yG:Pf(y)=f(y).\forall y\in G:P_f(y)=f(y).

Let f:GFf:G\to\mathbb F be any function. Define multilinear polynomial QfQ_f:

Qf(y)=xG(f(x)(i:xi=abyiba)(i:xi=bayiab)).Q_f(y)=\sum_{x\in G}\left(f(x)\left( \prod_{i:x_i=a}\frac{b-y_i}{b-a} \right)\left( \prod_{i:x_i=b}\frac{a-y_i}{a-b} \right)\right).

Clearly, Qf(y)=f(y)yGQ_f(y)=f(y)\forall y\in G. Using PP, any monomial of degree dd can be replaced by an equivalent polynomial of degree nd+Δn-d+\Delta since

iIyi=(i=1nyi)(i∉I1yi)=P(y)i∉I(1abyiba+1bayiab).\prod_{i\in I}y_i=\left(\prod_{i=1}^ny_i\right)\left(\prod_{i\not\in I}\frac{1}{y_i}\right)= P(y)\prod_{i\not\in I}\left(\frac{1}{a}\frac{b-y_i}{b-a}+\frac{1}{b}\frac{a-y_i}{a-b}\right).

Thus we replace each monomial of QfQ_f of degree d>n+Δ2d\gt\frac{n+\Delta}{2} by an equivalent polynomial of degree nd+Δ<n+Δ2n-d+\Delta\lt\frac{n+\Delta}{2}. We can thus take PfP_f to be the sum of these together with the monomials of QfQ_f degree at most n+Δ2\frac{n+\Delta}{2}.

One may convert any polynomial into a multi-linear polynomial of the same degree which is equivalent on a given hypercube {a,b}n\{a,b\}^n.

🤔Lemma 16. Let a,bFa,b\in\mathbb F and let PP be a polynomial of degree dd. Then there exists a multi-linear polynomial PP' of degree at most dd s.t. P(x)=P(x)P(x)=P'(x) for all x{a,b}nx\in\{a,b\}^n.

An occurrence of xikx_i^k in PP may be replaced by the polynomial

xibabak+xiababk,\frac{x_i-b}{a-b}a^k+\frac{x_i-a}{b-a}b^k,

which can never increase the degree.

🤔Lemma 17. For all integers n1n\ge 1:

4nπ(n+1)C2nn4nπn\frac{4^n}{\sqrt{\pi(n+1)}}\le C_{2n}^n\le\frac{4^n}{\sqrt{\pi n}}

🤔Corollary 10. For all integers n1n\ge1:

Cn/2n2nπn/2.C_{\lceil n/2\rceil}^n\le\frac{2^n}{\sqrt{\pi\lceil n/2\rceil}}.

🤔Proposition 13. Let PP be a polynomial in nn variables of total degree Δ\Delta over a field F\mathbb F. Let a,bFa,b\in\mathbb F and suppose G{a,b}nG\subseteq \{a,b\}^n is s.t.

yG:P(y)=i=1nyi.y\in G:P(y)=\prod_{i=1}^ny_i.

Then

G2n(12+410Δn).|G|\le 2^n\left(\frac{1}{2}+\frac{4}{10}\frac{\Delta}{\sqrt n}\right).

By Lemma 16, assume that PP is multilinear.

The number of functions f:GFf:G\to\mathbb F, which amounts to pGp^{|G|}, must be less than the number of multilinear polynomials of degree at most n+Δ2\frac{n+\Delta}{2}, which amounts to pMp^M, where MM denotes the number of monomials on nn variables of degree at most n+Δ2\frac{n+\Delta}{2}. It follows that GM|G|\le M.

Then conclude by estimating MM.

M=i=0n+Δ2Cni=2n1+i=n/2n+Δ2Cni2n1+Δ22nπn/22n1+410Δ2nn,M=\sum_{i=0}^{\lfloor\frac{n+\Delta}{2}\rfloor}C_n^i=2^{n-1}+\sum_{i=\lceil n/2\rceil}^{\lfloor\frac{n+\Delta}{2}\rfloor}C_n^i\le2^{n-1}+\frac{\Delta}{2}\frac{2^n}{\sqrt{\pi n/2}}\le 2^{n-1}+\frac{4}{10}\frac{\Delta2^n}{\sqrt n},

where CniC_n^i is estimated by central binomial coefficient, for i>n/2i\gt n/2, and use 2π104\sqrt{2\pi}\ge\frac{10}{4},

Finally combine the construction of the probabilistic polynomials with the counting argument to derive a circuit lower bound.

🎯Theorem 46 . Let p2p\neq 2 be a prime. Suppose that CC is depth hh circuit with at most SS unbounded fanin AND,OR,MODpAND,OR,MOD_p as well as NEGNEG gates computing MOD2MOD_2. Then

S=2Ω(n12h).S=2^{\Omega(n^{\frac{1}{2h}})}.

Lemma 13, Lemma 14, Proposition 13.

🎯Theorem 47 (Smolensky). Let pp be a prime. Suppose that CC is a depth hh circuit with at most SS unbounded fanin AND,OR,MODprAND,OR,MOD_{p^r} gates for a constant r1r\ge1 as well as NEGNEG gates computing function MODqMOD_q, where qpq\neq p is a prime. Then

S=2Ω(n12h).S=2^{\Omega(n^{\frac{1}{2h}})}.

这个电路下界真的是人想的出来的吗!!!