Signal
Sampling: sensor→A/D
Digital signal VS analog signal
analog: both X Y are contiguous. digital: both are discrete.
Basic Operations on Digital Signal
\(x[n]=\{\cdots,-0.2,2.2,1.1,0.2,-3.7,\cdots\}\)
addition, multiplication, time shifting(delay), reversing(反折), stretching(拉伸)
difference(差分): \(x'[n]=x[n+1]-x[n]\)
accumulation(累加)
Convolution(卷积,非常重要): \(F(t)=x(n)*h(n)=\sum_kx[n-k]h[k]\)
- commutative 交换律
- associative 结合律
- distributive 分配律
Circular convolution: \(y(n)=x(n)\circledast h(n)=\sum_k(x[n-k]h[k])\times R_k(n)\)
length of results of convolution between x[n] and h[k]: n+k-1.
Signal Types
pulse signal: \(\delta(t)\)
step signal: \(u(n)\), \(\delta(n)=u(n)-u(n-1)\)
sine and cosine signal.
Signaling System
LTI
aka Linear Time Invariant System
\(y[n]=\alpha x_1[n]+\beta x_2[n]\)
accumulator is a typical LTI.
median filter is not LTI.
Fourier Transform
aka fourier transform
FT type | object |
---|---|
Fourier Transform | non-periodic, contiguous |
Fourier Series | periodic, contiguous |
Discrete Time Fourier Transform | non-periodic, discrete |
Discrete Fourier Series | periodic, discrete |
DTFT: \(X(e^{j\omega})=\sum_{n=0}^{N-1}x(n)e^{-j\omega n}\)
DFS: \(X(n)=\sum_{n=0}^{N-1}x(n)e^{-j\frac{2\pi}{N}kn}\)
Inverse DFS: \(x(n)=\frac{1}{N}\sum_{n=0}^{N-1}X(n)e^{j\frac{2\pi}{N}kn}\)